
Supporting Information

Changing the HTS Paradigm: AI Driven Iterative Screening for

Hit Finding

Gabriel H. S. Dreiman1,2, Magda Bictash1, Paul V. Fish1, Lewis Griffin2, Fredrik Svensson1*

1. The Alzheimer’s Research UK University College London Drug Discovery Institute,

The Cruciform Building, Gower Street, London, WC1E 6BT, UK

2. Department of Computer Science, University College London, Gower Street, London,

WC1E 6BT, UK

Table S1. Parameters and code snippets used with the different machine learning algorithms.

RF RandomForestClassifier(n_estimators=1200, class_weight="balanced",

max_features='log2',bootstrap=True,min_samples_split = 8,

min_samples_leaf = 3, n_jobs = -1)

SVM SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15,

fit_intercept=True, max_iter=10000,tol=0.001, shuffle=True, verbose=0,

epsilon=0.1, n_jobs=-1, random_state=None, learning_rate='optimal',

eta0=0.0007, power_t=0.5, class_weight='balanced', warm_start=False,

average=5)

LightGBM lgb.LGBMClassifier(boosting_type='dart', num_leaves=42, max_depth=-1,

learning_rate=0.25, n_estimators=1200, subsample_for_bin=200000,

objective='binary', is_unbalance=False, max_bin=200,

min_child_weight=0.001, min_child_samples=30, subsample=1.0,

subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0,

random_state=None, n_jobs=-1, silent=True,

importance_type='split')

GCNN self.conv1 = GCNConv(n_features, 128, cached=False)

self.bn1 = BatchNorm1d(128)

self.conv2 = GCNConv(128, 64, cached=False)

self.bn2 = BatchNorm1d(64)

self.fc1 = Linear(64, 64)

self.bn3 = BatchNorm1d(64)

self.fc2 = Linear(64, 64)

self.fc3 = Linear(64, 1)

Loss: Categorical Crossentropy

Batch size: 128

Optimizer: adam

Epochs: 20

DNN 5 Dense layers,Units: [512,128,64,16,2], Activation:

[Sigmoid,ReLu,ReLu,Relu,SoftMax], Loss: ‘Categorical Crossentropy’,

Optimizer: adam, Batch-size: 500, Epochs: 5, Class weight: balanced with

sklearn.utils.class_weight.compute_class_weight()

Fig S1. Active recovery curves for each AID with 10% start size and 5% iteration sizes. Three

experiments were run for each AID, each experiment used a different random set of starting

compounds. Within each experiment, each classifier was initially trained on the same set of starting

compounds and subsequent selections were made based on its predicted scores for each iteration.

Notice that AID_628 displays a different curvature than the other datasets, the low active recovery

rates at both 35% and 50% are seen as outliers in the boxplots of Fig 2. Additionally, the

performance of each model on different starting sets (represented by solid, large dashed, and small

dashed lines) is relatively consistent for each AID. This consistency adds to our confidence that

starting set selection has limited influence in the overall performance of the methods we present.

Table S2. Mean percentage of active compounds recovered across all experiments for each method

for a 10% start and iterations of 5%.

Method % of library screened Mean % of actives
recovered

Standard deviation

SVM 35 % 74.54 7.4

SVM 50 % 86.78 6.23

RF 35 % 77.49 6.63

RF 50 % 88.74 5.93

LGBM 35 % 75.11 8.09

LGBM 50 % 86.55 7.38

DNN 35 % 75.30 7.02

DNN 50 % 87.23 6.39

GCNN 35 % 71.40 6.98

GCNN 50 % 85.3 6.01

random 35 % 36.06 2.27

random 50 % 51.10 2.05

Table S3. Median percentage of active compounds recovered across all experiments for each

method for a 10% start and iterations of 5%.

Method % of library screened Median % of actives
recovered

SVM 35 % 74.35

SVM 50 % 88.87

RF 35 % 77.54

RF 50 % 90.43

LGBM 35 % 77.45

LGBM 50 % 89.83

DNN 35 % 77.30

DNN 50 % 90.07

GCNN 35 % 72.08

GCNN 50 % 87.42

random 35 % 36.15

random 50 % 51.16

